Causal Discovery via MML

نویسندگان

  • Chris S. Wallace
  • Kevin B. Korb
  • Honghua Dai
چکیده

Automating the learning of causal models from sample data is a key step toward incorporating machine learning into decisionmaking and reasoning under uncertainty. This paper presents a Bayesian approach to the discovery of causal models, using a Minimum Message Length (MML) method. We have developed encoding and search methods for discovering linear causal models. The initial experimental results presented in this paper show that the MML induction approach can recover causal models from generated data which are quite accurate re ections of the original models and compare favorably with those of TETRAD II (Spirtes et al. 1994) even when it is supplied with prior temporal information and MML is not.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ensembling MML Causal Discovery

This paper presents an ensemble MML approach for the discovery of causal models. The component learners are formed based on the MML causal induction methods. Six different ensemble causal induction algorithms are proposed. Our experiential results reveal that (1) the ensemble MML causal induction approach has achieved an improved result compared with any single learner in terms of learning accu...

متن کامل

A Study of Causal Discovery With Weak Links and Small Samples

Weak causal relationships and small sample size pose two significant difficulties to the automatic discovery of causal models from observational data. This paper examines the influence of weak causal links and varying sample sizes on the discovery of causal models. The experimental results i l lustrate the effect of larger sample sizes for discovering causal models reliably and the relevance of...

متن کامل

The Discovery of Generalized Causal Models with Mixed Variables Using MML Criterion

One major difficulty frustrating the application of linear causal models is that they are not easily adapted to cope with discrete data. This is unfortunate since most real problems involve both continuous and discrete variables. In this paper, we consider a class of graphical models which allow both continuous and discrete variables, and propose the parameter estimation method and a structure ...

متن کامل

The MML Evolution of Classi cation

Minimum encoding induction (MML and MDL) is well developed theoretically and is currently being employed in two central areas of investigation in machine learning|namely, classiication learning and the learning of causal networks. MML and MDL ooer important tools for the evaluation of models, but ooer little direct help in the problem of how to conduct the search through the model space. Here w...

متن کامل

Mondo complexes regulate TFEB via TOR inhibition to promote longevity in response to gonadal signals

Germline removal provokes longevity in several species and shifts resources towards survival and repair. Several Caenorhabditis elegans transcription factors regulate longevity arising from germline removal; yet, how they work together is unknown. Here we identify a Myc-like HLH transcription factor network comprised of Mondo/Max-like complex (MML-1/MXL-2) to be required for longevity induced b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996